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We consider sound wave propagation in a range-periodic acoustic waveguide in the deep ocean. It is
demonstrated that vertical oscillations of a sound-speed perturbation, induced by ocean internal waves, influ-
ence near-axial rays in a resonant way, producing ray chaos and forming a wide chaotic sea in the underlying
phase space. We study interplay between chaotic ray dynamics and wave motion with signal frequencies of
50–100 Hz. The Floquet modes of the waveguide are calculated and visualized by means of the Husimi plots.
Despite of irregular phase space distribution of periodic orbits, the Husimi plots display the presence of ordered
peaks within the chaotic sea. These peaks, not being supported by certain periodic orbits, draw the specific
“chainlike” pattern, reminiscent of KAM resonance. The link between the peaks and KAM resonance is
confirmed by ray calculations with lower amplitude of the sound-speed perturbation, when the periodic orbits
are well-ordered. We associate occurrence of the peaks with the recovery of ordered periodic orbits, corre-
sponding to KAM resonance, due to suppressing of wave-field sensitivity to small-scale features of the sound-
speed profile that take place with increasing wavelength.

DOI: 10.1103/PhysRevE.76.056212 PACS number�s�: 05.45.Ac, 05.45.Mt, 43.30.�m, 92.10.Vz

I. INTRODUCTION

In recent years interrelation between wave-field structure
and its semiclassical description has attracted increasing at-
tention in the context of wave chaos—wave-field manifesta-
tions of ray chaos. Ray chaos means instability of ray trajec-
tories, conditioned by nonintegrability of the classical
Hamiltonian equations and is found to be the essential part of
wave propagation in various environments, ranging from ar-
tificial optical devices �1� to natural media �2–4�. In addition,
the problem of wave chaos is closely connected to the prob-
lem of quantum chaos, which is understood as quantum dy-
namics of classically chaotic systems �5�.

The present paper is devoted to long-range sound propa-
gation in the ocean, which has become of growing interest in
recent decades �6–9�. Increasing of pressure with depth,
combined with the warming of the upper oceanic layer, re-
sults in nonmonotonic dependence of the sound speed on
depth. According to Snell’s law, there occurs a waveguide
confining acoustic waves within a restricted water volume
and preventing their interaction with the lossy bottom. When
we deal with guided wave propagation, weak inhomogene-
ities along the axis of propagation may be sufficient for di-
viding phase space into regular and irregular regions �10�.
This division, relying on the Kolmogorov-Arnold-Moser
�KAM� theory, even persists in the case of a stochastically
perturbed waveguide �11,12�, giving rise to coherent ray
clusters �13�. Ray chaoticity leads to smearing of a spatial
wave-field structure due to irregular mode coupling �14,15�,
randomlike distribution of ray arrival times at the receiver
�16,17�, or anomalous transmission loss due to the chaos-
assisted ray escaping from a waveguide �18,19�.

On another front, it is well established that a wave packet
may demonstrate coherent or incoherent motion depending

upon whether the initial position of a wave packet is in the
regular or irregular part of classical phase space �20,21�. The
packet initially concentrated inside a region of stability re-
mains localized, while the packet placed within a chaotic
region spreads rapidly. In contrast to the semiclassical limit,
boundaries between stable and chaotic regions are penetrable
at nonzero wavelength. This enables extension of a wave
packet, evolving in the chaotic region, into an area with
regular dynamics; the effect is amplifying with increasing
wavelength �22�. Thus wave corrections imply suppressing
of the phase space separation.

Chaos means irregular behavior of rays and can be
thought of as purely refractional phenomena. The description
of chaos-induced effects in wave motion far from the semi-
classical limit requires the understanding of how wave re-
fraction depends on wavelength. This issue is of great impor-
tance in the presence of small-scale features, which seem to
be irrelevant for wave refraction at low frequencies �23�. In
underwater acoustics, these features are usually associated
with internal waves. In the present paper we follow two
aims. First, we study the effect of small-scale vertical oscil-
lations of a perturbation on ray dynamics. We shall show that
these oscillations account for strong chaos of near-axial rays.
Second, we investigate interrelation between strong chaos of
near-axial rays and the wave-field structure at low
frequencies.

The paper is organized as follows. In the next section we
describe briefly the model of a waveguide. Section III is
devoted to classical ray dynamics. In Sec. IV we study wave-
field properties by means of Husimi representation of the
Floquet modes. In the Conclusion, we shortly discuss the
results obtained.

II. MODEL OF A WAVEGUIDE

Consider a monochromatic wave field in a two-
dimensional acoustic waveguide in the deep ocean with the
sound speed c presented in the form*makarov@poi.dvo.ru
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c�z,r� = c0 + �c�z� + �c�z,r� , �1�

where c0 is a reference sound speed, �c�z� represents the
range-independent depth change of the sound speed due to
the waveguide, and �c�z ,r� is a small term varying with
range r. In the present paper we give consideration to the
narrow-angle wave propagation, when the original Helm-
holtz equation for a wave field reduces to the parabolic
equation

i

k0

���z,r�
�r

= Ĥ��z,r� ,

Ĥ = −
1

2k0
2

�2

�z2 +
�c�z� + �c�z,r�

c0
. �2�

Here k0=2�f /c0 is the wave number in the reference me-
dium with c=c0 and f is the signal frequency. The parabolic
equation formally coincides with the nonstationary
Schrödinger equation. In this analogy one treats range r as
the timelike variable, �c�z� as an unperturbed potential, �c
as a time-dependent perturbation, and k0

−1 as the Planck
constant.

In the present paper we shall consider an idealistic model
of a waveguide with �c�z� and �c�z ,r� given by the follow-
ing expressions:

�c�z� = −
c0b2

2
�� − e−az��e−az − �� , �3�

�c�z,r� = �c0
z

B
e−2z/B sin

2�z

	z
sin

2�r

	r
, �4�

where c0=c�z=h�=1535 m/s, �=exp�−ah�, h=4.0 km is
depth of the ocean bottom, �=1.078, a=0.5 km−1, b
=0.557, �=0.005, B=1 km, 	z=0.2 km, and 	r=5 km.
Function �c�z� takes on the smallest value at the depth

za =
1

a
ln

2

� + �
� 1 km. �5�

We shall refer to this depth as the channel axis. The respec-
tive unperturbed sound-speed profile is depicted in Fig. 1�a�.
Fast oscillations of �c�z ,r� are included in order to mimic
the effect of internal wave fine structure and distort the
sound-speed profile, as is demonstrated in Fig. 1�b�.

III. RAY DYNAMICS

The classical counterpart of the operator Ĥ is the Hamil-
tonian

H = − 1 +
p2

2
+

�c�z�
c0

+
�c�z,r�

c0
, �6�

where p=tan 
 is the analog to mechanical momentum and

 is a grazing angle of a sound ray. Ray trajectories obey the
Hamiltonian equations

dz

dr
=

�H

�p
= p , �7�

dp

dr
= −

�H

�z
= −

1

c0

d�c

dz
−

1

c0

d�c

dz
. �8�

The last term in the right-hand side of Eq. �8� can be rewrit-
ten in the following form:

1

c0

d�c

dz
=

�e−2z/B

2B
��1 −

2z

B
��cos �− − cos �+�

− kzz�sin �− − sin �+�	 , �9�

where we denoted �±=kzz±krr, kz=2� /	z, and kr=2� /	r.
The smallness of 	z implies that the range-dependent term
oscillates rapidly along a ray path, except for the resonant
regions, where either the condition

d�+

dr
= kzp + kr � 0 �10�

or the condition

d�−

dr
= kzp − kr � 0 �11�

is fulfilled. The theory of such resonances was developed in
�19,24–29�. Here we only give a brief description of their
properties.

Let us consider one of the resonant conditions, for in-
stance, the former one. First we simplify Eq. �9�. Since kz
can be thought of as a large parameter, we leave only those
terms in the right-hand side, which are proportional to kz. In
addition, we neglect the nonresonant term 
sin �−. Thus we
obtain

dp

dr
= −

1

c0

d�c

dz
−

�kzze−2z/B

2B
sin �+. �12�

At the next step we shall describe variations of the perturba-
tion phase �+ along a ray path. Using Eqs. �9� and �10� and
omitting superscript “+,” one derives the pendulumlike
equation
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FIG. 1. Sound-speed profiles: �a� the unperturbed case and �b� at
r=1.25 km with �=0.005.
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d2�

dr2 +
�kz

2ze−2z/B

2B
sin � +

kz

c0

d�c

dz
= 0. �13�

This equation can be rewritten as the coupled pair of first-
order equations

d�

dr
= y ,

dy

dr
= −

�kz
2ze−2z/B

2B
sin � −

kz

c0

d�c

dz
, �14�

corresponding to the Hamiltonian H̃ of the form

H̃�y,�� =
y2

2
+

kz

c0

d�c

dz
� −

�kz
2ze−2z/B

2B
cos � , �15�

where y and � are treated as canonically conjugated momen-
tum and coordinate, respectively. If the inequality

� 1

c0

d�c

dz
� 

�kzze−2z/B

2B
�16�

is satisfied, then the phase portrait corresponding to the
Hamiltonian �15� contains a resonant area bounded by the
separatrix loop �see Fig. 2�. A ray can cross the separatrix
due to variation of depth z, included in Eqs. �13�–�16� as a
slowly-varying parameter. When a ray arrives the resonant
area � switches its behavior from rotation to oscillation, that
is followed by localization of ray momentum in a narrow
interval near the resonant value pres=−kr /kz. The emphatic
point is that each crossing of the resonant area is followed by
a jumplike variation of the ray Hamiltonian �6�, which de-
pends extremely on the initial conditions; therefore multiple
visits to the resonant area cause chaotic ray diffusion in the
underlying phase space.

The formulas �10� and �16� allow one to distinguish the
rays affected by the resonance. The inequality �16� is ful-
filled only near the waveguide axis, where d�c /dz=0. The
ray momentum at the axis is given by the equation

p�z = za,H0� =�2E +
b2�� − ��2

4
, �17�

where za is the depth of the channel axis �5�, and the param-
eter

E = 1 + H � 1 + H�c=0 �18�

can be referred to as the “energy” of ray oscillations in a
waveguide. Substituting Eq. �17� into Eq. �10�, we find the
resonant value of E,

Eres =
	z

2

2	r
2 −

b2�� − ��2

8
. �19�

Note that formula �19� relates to the resonance �11� as well.
The conditions �10� and �11� differ by the sign of resonant
momentum, the former arises at p0, while the latter takes
place at p�0. It means that these resonances affect the same
rays, but they act at different phases of a trajectory. With
	z=0.2 km and 	r=5 km the condition �19� holds for near-
axial rays. According to Fig. 3, resonances �10� and �11�
cause a wide chaotic sea in phase space, without consider-
able stable islands within. Therefore one can assume that
chaotic diffusion of rays inside the sea is close to ergodic
mixing.

IV. FLOQUET MODES

Mixing ray dynamics anticipates fast decoherence and
spreading of a wave packet initially located within the cha-
otic sea, until all the area of the sea will be covered �20�.
Certainly, it is the case in the short wavelength limit, when
ray and wave descriptions are well correlated �21,30�. The
question we ask is how the chaotic sea reveals itself at rela-
tively low frequencies, when influence of diffraction and in-
terference is non-negligible, and one-to-one correspondence
between a wave pattern and its semiclassical approximation
should not be expected. To address this issue, we shall ana-
lyze phase space structure of the Floquet modes, which were
first applied for studying underwater sound propagation in
�15,31�. The Floquet modes can be cast in the form

um�z,r� = ei
mr/	r�m�z,r� , �20�

where m=1,2 , . . ., �m�z ,r�=�m�z ,r+	r�, and 
m is a real
constant. The Floquet modes um are the eigenfunctions of the

shift operator F̂, defined as

F̂��z,r� = ��z,r + 	r� . �21�

In the present paper we consider the functions
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FIG. 2. The phase portrait corresponding to the Hamiltonian
�15�.

0

1

2

3

4
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

z
(k

m
)

p

FIG. 3. Poincaré map with �=0.005.
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�m�z� = �m�z,r = 0� . �22�

Each of these functions can be expanded in some orthogonal
basis,

�m�z� = �
l

clm�l�z� , �23�

where c1m ,c2m , . . . are the components of the mth eigenvector
of the matrix with elements

Fmn = �
z=0

h

�m�z�F̂�n�z�dz . �24�

Here F̂�n�z� is the solution of the parabolic equation at the
range r=	r with initial condition ��z ,r=0�=�n�z�. We
found the set of functions �n by solving the Sturm-Liouville
problem

�2�n

�z2 + 2k0
2�En −

�c

c0
��n = 0. �25�

The solution is the following:

�n��� = Ane−�/2�snG�1 − n, 2sn + 1, �� , �26�

where n is a positive integer, � is linked with depth by for-
mula

��z� =
2k0

b
ae−az, �27�

An is the normalization constant, determined by the condition

� �n�n
�dz = 1, �28�

G�1−n , 2sn+1, �� is the degenerate hypergeometric func-
tion, and the parameter sn is given by the expression

sn =
k0

a
���b2

2
− En. �29�

Eigenvalues of the parameter E are given by the following
expression:

En =
��b2

2
−

1

2
�b

� + �

2
−

a

k0
�n +

1

2
�	2

. �30�

At small n the functions �n coincide with normal modes of
the unperturbed waveguide.

Phase space representation of the Floquet modes can be
obtained by use of the Husimi distribution function

Wh�z,p,r� = � 1

�4 2��z
2� dz��n�z�,r�

�exp�ik0p�z� − z� −
�z� − z�2

4�z
2 ��2

. �31�

Here �z is the smoothing scale, which we took as 100 m.
Before analyzing the Floquet modes, it is necessary to

define a criterion by which we shall determine their chaotic-
ity. The simplest way is to compare phase space location of a
Floquet mode with classical phase space structures �32�. We
shall use the criterion of Leboeuf and Voros �33–35�, identi-
fying the chaotic Floquet state by irregular distribution of
zeroes of the Husimi function. Husimi zeroes of regular Flo-
quet states are located along curves. For the sake of a con-
venient representation, we shall analyze the distribution of
Husimi zeroes in the space of the action and angle variables.
The action and angle variables are introduced by the follow-
ing formulas:

I =
1

2�
� pdz, � =

�

�I
�

z0

z

pdz . �32�

The action variable I measures steepness of a ray trajectory
and is equal to 0 for the horizontal axial ray. In the integrable
limit all the Husimi zeroes are distributed along horizontal
lines I=const. We shall restrict ourselves by only qualitative
analysis of the Husimi zeroes in the range of small values of
the action, where the chaotic sea takes place. The exact ana-
lytical expressions for the action and angle variables are pre-
sented in the Appendix.

In addition, we shall calculate the so-called number of
principal components �36�. For the Floquet mode with num-
ber m, it is determined by the formula

��m� =
1

�
l

clm4
. �33�

This quantity measures delocalization of a Floquet mode
with respect to the basis of the eigenfunctions �26�, and also
may be treated as a measure of chaoticity. Roughly speaking,
� is the number of eigenmodes of the unperturbed wave-
guide, which give the dominant contribution into a given
Floquet mode. Chaotic Floquet modes, being formed by a
large number of waveguide eigenmodes, are characterized by
large values of � �15�.

Let us start with considering the frequency of 100 Hz.
Despite of strong chaos in the ray limit, the majority of the
Floquet modes are localized within narrow bands in phase
space with � ranging from 1 to 2. Only few Floquet modes
spread over the chaotic layer. The most extended Floquet
mode, having the largest number of principal components
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FIG. 4. Floquet mode with the largest number of principal com-
ponents, �=0.005.
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���4�, is presented in Fig. 4. Its Husimi zeroes, though
covering a wide area, are located along almost horizontal
curves; this is shown in Fig. 5. Therefore we can regard this
mode rather as weakly irregular than chaotic.

Regular Floquet modes were found in all the phase space
regions corresponding to guided rays, even inside the chaotic
sea. Let us pay attention to those Floquet modes, which have
a “dial-plate” structure, as is shown in Fig. 6. This structure
consists of eight well-resolved and ordered peaks. The angu-
lar locations of the peaks in Figs. 6�a� and 6�b� are different;
the peaks in the upper plot correspond to the zeroes in the
lower one, and vice versa.

The origin of the peaks can be clarified if we construct the
Poincaré map with a decreased amplitude of the range-
dependent perturbation �=0.0005. This map is presented in
Fig. 7. A bare comparison of Figs. 6 and 7 yields that peaks
in Fig. 6�a� are allocated near the elliptic fixed points of the
resonance 1:8, while peaks in Fig. 6�b� are placed near the
hyperbolic ones. As it follows from Fig. 3, this resonance is
completely destroyed with �=0.005. Another argument for
the link between “dial-plate” structure and resonance 1:8 is
presented in Fig. 8. There it is shown that eight Husimi ze-
roes of the mode, presented in Fig. 6�a�, lay on the horizontal
line I= Ires, where Ires is the resonant action, satisfying the
equation

m��I = Ires� = nkr, �34�

with m=8 and n=1. Here � is the spatial frequency of ray
oscillations in the waveguide. For the resonance 1:8 we have

Ires�0.2Is, where Is is the most accessible action for rays
propagating without reflections from the lossy bottom.
Hence one may conclude that the peaks in the Husimi plots
relate to the so-called scarred states �37,38�.

However, this interpretation is problematic, because in-
creasing of � drastically alters the phase space distribution of
periodic orbits. We demonstrate it by constructing the map
representing variations of ray action per ray cycle length as a
function of initial coordinates in phase space �12,13�. These
maps can be used for detecting periodic orbits. The respec-
tive plots with �=0.0005 and 0.005 are presented in Figs. 9
and 10. All the periodic orbits belong to the zero lines sepa-
rating the regions of negative and positive variations of ac-
tion. Approximate locations of elliptic and hyperbolic peri-
odic orbits may be found as intersections of the zero lines
with horizontal lines I / Is= Ires / Is. Figures 9�b� and 10�b� rep-
resent variations of the action along that line.

As it follows from Fig. 9, the map is smooth with �
=0.0005, and intersections with the horizontal bold line 1:8
are well-ordered. In contrast, the map with �=0.005 �see Fig.
10� displays a very complicated “wavelike” pattern, and in-
tersections with the bold line have dense and irregular distri-
bution. Obviously, these intersections cannot be associated
with elliptic and hyperbolic fixed points of KAM resonance
1:8. As a consequence, periodic orbits are disordered. This is
demonstrated in Fig. 11, where we show phase space loca-
tions of periodic orbits in the range of low values of the
action. Evidently, the bright spots in the Husimi plots for the
Floquet modes do not correspond to certain periodic orbits.
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FIG. 5. Distribution of Husimi zeroes for the Floquet mode
depicted in Fig. 4 in the plane of normalized initial values of the
action and angle. Is is the most accessible value of the action for
guided rays.
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FIG. 6. Floquet modes with “dial-plate” structure. The signal
frequency is of 100 Hz, �=0.005.
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FIG. 7. Poincaré map with �=0.0005.
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FIG. 8. Distribution of Husimi zeroes for the Floquet mode
depicted in Fig. 6�a�. The horizontal line corresponds to the reso-
nance 1:8.
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Floquet modes having the same “dial-plate” structure
were also found with the frequencies of 70 and 50 Hz �see
Figs. 12 and 13�. In these cases the Floquet modes do not
possess any hallmarks of chaos.

Our explanation of the well-ordered peaks in the Husimi
plots is the following. Decreasing of the signal frequency
makes wave refraction less sensitive to small-scale vertical
oscillations of the sound-speed perturbation. As it was shown
in the previous section, these oscillations are responsible for
strong chaos of near-axial rays. Hence the main source of
chaos is suppressed at low frequencies. Enhancing of ray-
wave correspondence requires smoothing of fast vertical os-
cillations using some averaging technique. Evidently, the av-
eraging of fast oscillations means replacement of the original
sound-speed perturbation by the smoothed one with a lower
amplitude. This implies that the disordered multiplication of
periodic orbits should be removed, and the well-ordered pe-
riodic orbits of completely destroyed resonance 1:8 should
be restored. Thus the decreasing of frequency leads to the
similar effect as the decreasing of the perturbation’s ampli-
tude and is followed by recovery of periodic orbits and oc-
currence of the peaks observed. In some sense, peaks of the

Floquet modes may be regarded as some specific kind of
scars.

V. CONCLUSION

In the present paper we have considered sound wave mo-
tion in an acoustic waveguide with the range-dependent
sound-speed perturbation imposed. It is shown that small-
scale vertical oscillations of the perturbation influence near-
axial rays in a resonant way. Scattering on resonance makes
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FIG. 9. �a� Variations of the normalized action �I / Is per ray
cycle length in the plane of normalized initial values of the action
and angle with �=0.0005. The horizontal bold line corresponds to
KAM resonance 1:8. Thin lines mark zero variations of the action.
�b� Variations of the normalized action along the bold line.
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FIG. 10. The same as in Fig. 9, but with �=0.005.
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FIG. 11. Phase space locations of periodic orbits, computed with
�=0.005.
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near-axial rays unstable and leads to the forming of a wide
chaotic sea in the underlying phase space, without any con-
siderable islands of stability. Moreover, small-scale vertical
oscillations of the perturbation cause proliferation and disor-
dered phase space distribution of periodic orbits. Neverthe-
less, the majority of the Floquet modes calculated with fre-
quencies of 50–100 Hz reveals a regular pattern with ordered
peaks and Husimi zeroes. The peaks are located near the
elliptic or hyperbolic fixed points of the “classical” KAM
1:8. This is confirmed by constructing the Poincaré map with
lower amplitude of the perturbation. However, the peaks ob-
served are not associated with certain periodic orbits in the
original case. That resonance, as well as its periodic orbits, is
completely destroyed with a nondecreased amplitude of the
sound-speed perturbation. Thus we are faced with an eccen-
tric conflict of ray and wave descriptions: the peaks have
specific “classical” resonant topology but are not supported
by classical periodic orbits.

In our opinion, the revival of KAM resonance 1:8 on the
Husimi plots indicates the necessity of frequency-dependent
corrections to the standard ray approximation, when ray mo-
tion is strongly affected by small-scale features. A likely way
of introducing such corrections is the construction of some
effective sound-speed profile, using the homogenization pro-
cedures �39�, or exploiting the quantum action �40�. We sup-
pose that ray modeling with the effective sound-speed profile
should be more consistent with wave pattern. In particular, a
corrected ray approximation may provide the desirable link
between the Husimi peaks and the respective periodic orbits.

Our expectations are partially supported by the numerical
simulation, presented in �23�, where it was shown that
smoothing of fine-scale structures does not lead to significant
changes in a wave field. As a concluding remark, it should be
mentioned that the stabilizing of wave refraction with de-
creasing frequency seems to be worth overcoming limita-
tions on the hydroacoustical tomography, which are posed by
ray chaos �41�.
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APPENDIX

The action and angle variables for the rays propagating
without reflections from the ocean surface are given by the
formulas

I =
b
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FIG. 12. Floquet modes with “dial-plate” structure. The signal
frequency is of 70 Hz, �=0.005.
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FIG. 13. Floquet modes with “dial-plate” structure. The signal
frequency is of 50 Hz, �=0.005.
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� = ±
�

2
� �1, �A2�

where the quantities Q and �1 are given by the formulas

Q =��� − ��2 +
8E

b2 , �A3�

�1 = arcsin�� + � − �2�� − 4E/b2�eaz

Q
� . �A4�

The upper and lower signs in Eq. �A2� correspond to positive
and negative values of ray momentum, respectively. The ac-
tion and the angle for surface-bounce rays are given by the
following formulas:

I =
b

a
�� + �

4
−

� + �

2�
arcsin

� + � − 2

Q
−

� + 2�2

2�
��� −

2E

b2 �
+

p�z = 0�
�a

, �A5�

� = ± �
�2 − �1

�2 + �/2
. �A6�

In Eqs. �A5� and �A6� we used the notation

�2 = arcsin�� + � − 2�� + 4E/b2

Q
� . �A7�

Under reflections, ray momentum is given by the formula

p�z = 0� = ± �2E − b2�� − 1��� − 1� . �A8�

The inverse transformation for the rays, propagating without
reflections from the surface, is expressed as follows:

z�I,�� =
1

a
ln

a2b2�� + � − Q cos ��
2�2 , �A9�

p�I,�� =
�Q sin �

a�� + � − Q cos ��
, �A10�

where � is the spatial frequency of ray oscillations in a
waveguide. It depends on E in the following way:

� = ab��� − 2E/b2. �A11�
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